A composition theorem for generalized Bhaskar Rao designs

نویسنده

  • William D. Palmer
چکیده

Let H be a normal subgroup of a finite group G. We show that: If a GBRD(v, k, A.; G IH) exists and a GBRD(k,j, JA.; H) exists then a GBRD(v,j, AJA.; G) exists. We apply this result to show that: i) If k does not exceed the least prime factor of IG I, then a GBRD(k, k, A; G) exists for all A EO (mod IG I); ii) If G is of order IG Ie lor 5 (mod 6) then a GBRD(v, 3, A = t IG I; G), v>3, exists if and only if a BIBD(v, 3, t) exists; iii) If G is a nilpotent group of odd order then the necessary conditions are sufficient for the existence of a GBRD(v, 3, A; G); and, iv) If G is ap -group,p ;f2, then the necessary conditions are sufficient for the existence of a GBRD(v, 3, A.; G).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bhaskar Rao designs and the alternating group A4

In this paper we introduce a new construction for generalized Bhaskar Rao designs. Using this construction, we show that a generalized Bhaskar Rao design, GBRD(v, 3, A; A4) exists if and only if A == 0 (mod 12).

متن کامل

Bhaskar Rao designs and the groups of order 12

We complete the solution of the existence problem for generalized Bhaskar Rao designs of block size 3 over groups of order 12. In particular we prove that if G is a group of order 12 which is cyclic or dicyclic, then a generalized Bhaskar Rao design, GBRD(v, 3, λ = 12t;G) exists for all v ≥ 3 when t is even and for all v ≥ 4 when t is odd.

متن کامل

Generalized Bhaskar Rao designs with block size three

We show that the necessary conditions λ = 0 (mod IGI), λ(v-l)=0 (mod2), λv(v 1) = [0 (mod 6) for IGI odd, (0 (mod 24) for IGI even, are sufficient for the existence of a generalized Bhaskar Rao design GBRD(v,b,r,3,λ;G) for the elementary abelian group G, of each order IGI. Disciplines Physical Sciences and Mathematics Publication Details Seberry, J, Generalized Bhaskar Rao designs with block si...

متن کامل

Bhaskar Rao ternary designs and applications

Generalized Bhaskar Rao n-ary are defined. This paper studies with elements from abelian groups of Generalized Bhaskar Rao nary called Bhaskar Rao Bhaskar Rao a v b matrix of ±1 and such that the inner product of any two rows 0 and the matrix obtained of X by its absolute value the incidence matrix of the construction of infinite families of Balanced Balanced are Some construction methods and n...

متن کامل

Bhaskar Rao designs over small groups

We show that for each of the groups S3, D4, Q4, Z4 x Z2 and D6 the necessary conditions are sufficient for the existence of a generalized Bhaskar Rao design. That is, we show that: (i) a GBRD (v, 3, λ; S3) exists if and only if λ ≡ O (mod 6 ) and λv(v 1) ≡ O(mod 24); (ii) if G is one of the groups D4, Q4, and Z4 x Z2, a GBRD (v, 3, λ; G) exists if and only if λ ≡ O(mod 8) and λv(v 1) ≡ O(mod 6)...

متن کامل

Generalized Bhaskar Rao designs with two association classes

In previous work generalized Bhaskar Rao designs whose underlying design is a b~lanced incomplete block design have been considered. In the first section of this paper generalized Bhaskar Rao designs (with 2 association classes) whose underlying design is a group divisible design are defin~d. Some methods for the construction of these designs are developed in the second section. It is shown tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Australasian J. Combinatorics

دوره 6  شماره 

صفحات  -

تاریخ انتشار 1992